Abstract
Ultrahigh-resolution pure shift NMR has recently been shown as a promising approach for providing quantitative metabolic profiles that can be used to study the metabolic footprint left by cancer cells in their aqueous growth medium. In this approach, a library of reference 1H pure shift spectra with water suppression was implemented to determine metabolite concentrations from the NOESY-presat-PSYCHE-SAPPHIRE spectrum recorded on the extracellular medium. This achievement clearly called for a generalization of a quantification method relying on ultrahigh-resolution data to other biological samples of interest (urine, plasma, tissue extracts, etc.), which requires evaluating the robustness of the analytical workflow. We have first addressed the influence of sample preparation on the quality of metabolite quantification. The quantification performed on a model mixture of metabolites prepared under different conditions shows good linearity, trueness, and precision, which highlights the high reproducibility of the proposed analytical protocol regardless of the physicochemical conditions in the sample. Second, we have successfully implemented this quantification protocol to determine metabolite levels in real urine and plasma samples, thereby paving the way for the use of the library of pure shift reference spectra for accurate and quantitative metabolic profiling of a broad range of aqueous samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have