Abstract
Higher harmonics in current-phase relations of Josephson Junctions are predicted to be observed when the first harmonic is suppressed. Conventional theoretical models predict higher harmonics to be extremely sensitive to changes in barrier thickness, temperature, and so on. Here we report experiments with Josephson junctions incorporating a spin-dependent tunnelling barrier, revealing a current-phase relation for highly spin polarized barriers that is purely second harmonic in nature and is insensitive to changes in barrier thickness. This observation implies that the standard theory of Cooper pair transport through tunnelling barriers is not applicable for spin-dependent tunnelling barriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.