Abstract
The sixteen types of geometrical symmetries corresponding to the continuous groups of collineations and motions generated by a null vector n are considered. The common propagation vector of a pure electromagnetic radiation field and a pure gravitational radiation field is chosen to be n. For such radiation fields all the sixteen symmetries are expressed in terms of the Newman–Penrose (NP) spin coefficients and then it is shown that when n is a gradient field there are only five independent symmetries. The existence of these five nontrivial null symmetries is established by finding exact solutions of Einstein–Maxwell field equations when n satisfies freedom conditions and when l of the NP null tetrad (l, m, m̄, n) is shear-free. Thus a class of space-times of pure radiation fields that admit (i) a Ricci collineation which is not a curvature collineation (CC), (ii) a CC which is not a special curvature collineation (SCC), (iii) a SCC which is not an affine collineation (AC), (iv) an AC which is not a motion, and (v) a motion is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.