Abstract

Curvature collineations are symmetry directions for the Riemann tensor, as isometries are for the metric tensor and Ricci collineations are for the Ricci tensor. Complete listings of many metrics possessing some minimal symmetry have been given for a number of symmetry groups for the latter two symmetries. It is shown that a claimed complete listing of cylindrically symmetric static metrics by their curvature collineations [1] was actually incomplete and is completed here. It turns out that in this complete list, unlike the previous claim, there are curvature collineations that are distinct from the set of isometries and of Ricci collineations. The physical interpretation of some of the metrics obtained is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.