Abstract

Separator is a vital component of lithium-ion batteries (LIBs) due to its important roles in the safety and electrochemical performance of the batteries. Herein, we reported a cellulose nanofibrils (CNFs) reinforced pure cellulose paper (CCP) as a LIBs separator fabricated by a facile filtration process. The nanosized CNFs played crucial roles as a tuner to optimize the pore size of the as-prepared CCP, and also as a reinforcer to improve the mechanical strength of the resultant CCP. Results showed that the tensile strength of the CCP with 20 wt.% CNFs was 227 % higher compared to the commercial cellulose separator. In addition, the lithium cobalt oxide/lithium metal battery assembled with CCP separator displayed better cycle performance and working stability (capacity retention ratio of 91 % after 100 cycles) compared to the batteries with cellulose separator (52 %) and polypropylene separator (84 %) owing to the multiple synergies between CCP separator and electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.