Abstract
We investigate the spontaneous emission rate of a two-level quantum emitter next to a composite medium made of randomly distributed metallic inclusions embedded in a dielectric host matrix. In the near-field, the Purcell factor can be enhanced by two-orders of magnitude relative to the case of an homogeneous metallic medium, and reaches its maximum precisely at the insulator-metal transition. By unveiling the role of the decay pathways on the emitter's lifetime, we demonstrate that, close to the percolation threshold, the radiation emission process is dictated by electromagnetic absorption in the heterogeneous medium. We show that our findings are robust against change in material properties, shape of inclusions, and apply for different effective medium theories as well as for a wide range of transition frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.