Abstract
In this paper, we study punctured spheres in two dimensional ball quotient compactifications $(X, D)$. For example, we show that smooth toroidal compactifications of ball quotients cannot contain properly holomorphically embedded $3$-punctured spheres. We also use totally geodesic punctured spheres to prove ampleness of $K_X + \alpha D$ for $\alpha \in (\frac{1}{4}, 1)$, giving a sharp version of a theorem of the first author with G. Di Cerbo. Finally, we produce the first examples of bielliptic ball quotient compactifications modeled on the Gaussian integers.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have