Abstract

AbstractThe mechanism of electrostatic spraying of insulating fluids, such as air or organic solvents, into relatively conductive fluids, such as water, is investigated in this work. Experiments with air sprayed into water through an electrified capillary showed that the pressure inside the capillary increases, reaches a maximum, and then decreases as the applied voltage is increased. The initial pressure increase is due to the electric stress on the fluid interface, while the decrease is due to the Coulombic electrohydrodynamic flow generated near the end of the capillary. It is shown that electric fields can cause simultaneous pumping, spraying, and mixing of fluids. This phenomenon is demonstrated for air and kerosene in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.