Abstract
We demonstrate a high-sensitivity acetylene/methane gas sensor based on hollow-core fiber photothermal interferometry (PTI) with a pump–probe-alternating technique. This technique utilizes two distributed-feedback lasers as pump and probe beams alternatively for two gas components to facilitate photothermal phase modulation and detection through time-division multiplexing. With a 2.5-cm-long hollow-core conjoint-tube fiber, noise-equivalent concentrations of 370 ppb and 130 ppb are demonstrated for methane and acetylene, respectively. Noise characteristics of the PTI system are analyzed and experimentally tested. The proposed technique eliminates the need for an additional laser in the traditional PTI setup, enabling the construction of a sensitive yet more cost-effective multi-gas component detection system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.