Abstract

We demonstrate a high sensitivity all-fiber spectroscopic methane sensor based on photothermal interferometry. With a 2.4-m-long anti-resonant hollow-core fiber, a 1654 nm distributed feedback laser, and a Raman fiber amplifier, a noise-equivalent concentration of ${\sim}{4.3}\;{\rm ppb}$ methane is achieved at the room temperature and pressure of ${\sim}{1}\;{\rm bar}$. The effects of temperature on the photothermal phase modulation as well as the stability of the interferometer are studied. By introducing a temperature-dependent compensation factor and stabilizing the interferometer at quadrature, signal instability of ${\sim}{2.1}\%$ is demonstrated for temperature variation from 296 to 373 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.