Abstract

One of the well-known models to represent Single Event Transient phenomenon at the logic-level is the rectangular pulse model. However, the pulse-length in this model has a vital contribution to the accuracy and validity of the rectangular pulse model. The work presented in this paper develops two approaches for determination of the pulse-length of the rectangular pulse model used in Single Event Transient (SET) faults. The first determination approach has been extracted from radiation testing along with transistor-level SET analysis tools. The second determination approach has been elicited from asymptotic analytical behaviour of SETs in 45-nm CMOS process. The results show that applying these two pulse-length determination approaches to the rectangular pulse model will cause the fault injection results converge much faster (up to sixteen times), compared to other conventional approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.