7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/s00340-015-6277-8
Copy DOIJournal: Applied Physics B | Publication Date: Jan 1, 2016 |
Citations: 16 | License type: CC BY 4.0 |
We report on time-resolved pulsed four-wave mixing (FWM) signals in a thermal Rubidium vapor involving a Rydberg state. We observe FWM signals with dephasing times up to 7 ns, strongly dependent on the excitation bandwidth to the Rydberg state. The excitation to the Rydberg state is driven by a pulsed two-photon transition on ns timescales. Combined with a cw de-excitation laser, a strongly directional and collective emission is generated according to a combination of the phase matching effect and averaging over Doppler classes. In contrast to a previous report (Huber et al. in Phys Rev A 90: 053806, 2014) using off-resonant FWM, at a resonant FWM scheme we observe additional revivals of the signal shortly after the incident pulse has ended. We infer that this is a revival of motion-induced constructive interference between the coherent emissions of the thermal atoms. The resonant FWM scheme reveals a richer temporal structure of the signals, compared to similar, but off-resonant excitation schemes. A simple explanation lies in the selectivity of Doppler classes. Our numerical simulations based on a four-level model including a whole Doppler ensemble can qualitatively describe the data.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.