Abstract

ABSTRACTWe report the recent progress of crystallization of amorphous silicon (a-Si), amorphous germanium (a-Ge) and amorphous silicon germanium alloy (a-SiGe) using a pulsed-Xenon-lamp system with multiple lamps. The precursor materials were deposited using a sputtering machine on display glass substrates maintained on a rotary holder. The RF powers on the silicon and germanium targets were varied to control the Ge/Si ratio in the materials. The film thickness was in the range of 50-100 nm, targeting the application in thin film transistors (TFT). The samples were pre-heated to 350-450°C in a conveyer chamber with nitrogen flow before the crystallization. The materials were characterized using AFM, Raman and Spectroscopic Ellipsometry. We demonstrated that we can uniformly crystallize a-Si, a-SiGe, and a-Ge with a single-pulse or multiple-pulse process on 10×5 cm2 glass substrates. We found that the required crystallization power for a-Ge is much lower than for a-Si. The power needed to crystallize a-SiGe is between the power required for a-Ge and a-Si crystallizations, and it increased with increasing Si fraction. No Raman signal was measurable in the as-deposited films. Strong Raman peaks at 520 cm-1 and 290 cm-1 were observed in the pulsed-lamp crystallized poly-Si and poly-Ge films, respectively. Distinct Ge-Ge, Si-Ge, and Si-Si vibration modes were observed at ~285 cm-1, ~390 cm-1, and ~470 cm-1, respectively, in the poly-SiGe films formed after the pulsed-light treatments. Their intensity ratios and the peak positions depended on the Ge/Si ratio and the light intensity used for the crystallization. AFM images showed the formation of large grains with increased surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call