Abstract

Ni-base superalloy films were deposited on single-crystal (SC) Ni-base superalloy substrates from a target with the same alloy composition by pulsed laser deposition (PLD) technique. Microstructure and growth behavior of the films deposited were investigated by X-ray diffraction and scanning electron microscopy, and atomic force microscope. The homoepitaxial growth of the SC Ni-base superalloy film occurred at the 1123 K (850 °C) substrate temperature and 2 J/cm2 pulse energy. Films generally exhibited a strong polycrystalline characteristic as the substrate temperature and pulse energy increased. The SC film had a smooth surface. The measured root mean square roughness of the SC film surface was ~6 nm. Based on the Taguchi analysis, the substrate temperature and pulse energy were the most significant process parameters influencing the structural characteristics of the films. Also, the influence of the pulse repletion rate and deposition time was not found to be significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.