Abstract
Yttrium iron garnet (YIG, Y 3Fe5O12) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd3Ga5O12) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm−3), in-plane easy axis, and damping parameters as low as 2.2 × 10−4. These high quality YIG thin films are useful in the investigation of the origins of novel magnetic phenomena and magnetization dynamics.
Highlights
Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization
Yttrium iron garnet (YIG, Y3Fe5O12) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd3Ga5O12) substrates with (100) orientation using pulsed laser deposition
Experiments in magnonics were motivated by radar and microwave applications and were made using bulk yttrium iron garnet (YIG) crystals, largely due to YIG’s intrinsically low magnetic damping.[1,2,3]
Summary
Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.