Abstract

A novel two-stage technique to fabricate silicon nanoparticles is reported. At the first stage, silicon nanowire arrays are formed by metal-assisted chemical etching. At the second stage, the nanoparticles are produced by pulsed laser ablation of the silicon nanowire targets in water and ethanol. The fabricated particles have relatively small mean size in the range of 24 – 45 nm depending on the used buffer liquid. The ablation threshold of the silicon nanowire arrays is 2 – 11 times smaller than that for crystalline silicon targets. Owing to the achieved parameters, the proposed technique is more efficient in comparison with traditional approaches of mechanical milling of silicon nanowires and laser ablation of crystalline silicon. Raman spectroscopy study revealed crystalline structure of the fabricated silicon nanoparticles. The properties of the produced nanoparticles indicate their high potential in biophotonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call