Abstract

Oil spills represent a critical environmental threat, particularly to marine ecosystems, necessitating the development of efficient and eco-friendly remediation technologies. This study explores the application of pulsed laser ablation (PLA) in fabricating polymer-based magnetic nanocomposites, with a focus on polyvinylpyrrolidone, chitosan, and methyl cellulose. These polymers, renowned for their proficiency in adsorbing pollutants from various oils, were combined with magnetite nanoparticles (NPs) in a compressed tablet form. The PLA process facilitated the generation of nanocomposites, which were subsequently collected using an external magnetic field. The chemical composition of these composites was analyzed through Fourier-transform infrared (FTIR) and Raman spectroscopy, while particle sizes were determined using the Leica Image Processing and Analysis System. The study revealed that PLA is a green, single-step, and effective technique for preparing magnetic nanocomposites, producing particles predominantly in the 400 nm–4 µm size range. Furthermore, the application of these composites in oil/water separation demonstrated with separation commencing approximately 1 s after the application of a magnetic field. These findings underscore the potential of PLA in crafting magnetic nanocomposites for the rapid and environmentally sustainable remediation of oil spills.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.