Abstract

Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a globalconcern due to many industries neglecting the environmentalprotocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used.Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer basednanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal ofheavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call