Abstract

Bipolar degradation is a known problem in the development of SiC MOSFETs when the body diodes (p+ body/ n-drift layer) are forward biased. Mostly higher voltage classes like the 1.7 kV or 3.3 kV SiC MOSFETs have been studied in literature resulting with significant Rdson increase [1-2]. In this work, body diode stress was conducted for 1.2kV SiC MOSFETs, which were mapped with Infra-Red photoluminescence (IR-PL) to determine and localize the exact number of BPDs present in the drift layers of each die [3, 4] and grouped by this criterion. Devices were stressed at extremely high current densities (1200 – 1700 A/cm2) under pulsed conditions. The post-stress analysis shows non-negligible increase of Rdson and Vf. Bipolar degradation occurring from stressing the body diodes at high forward current densities was confirmed by electroluminescence analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.