Abstract
Mn2+.tartrate dehydrogenase.substrate complexes have been examined by electron spin echo envelope modulation spectroscopy. The occurrence of dipolar interactions between Mn2+ and 2H on [2H]pyruvate and [4-2H]NAD(H) confirms that Mn2+ binds at the enzyme active site. The 2H signal arising from labeled pyruvate was lost if the sample was incubated at room temperature, indicating that the enzyme catalyzes exchange between the pyruvate methyl protons and solvent protons. Mn-133Cs dipolar coupling was also observed, which suggests that the monovalent cation cofactor also binds in the active site. The tartrate analogue oxalate was observed to have a significant effect on the binding of NAD(H). Oxalate appears to constrain the binding of NAD(H) so that the nicotinamide portion of the cofactor is held in close proximity to Mn2+. Spectra of enzyme complexes prepared with (R)-[4-2H]NADH showed a more intense 2H signal than analogous complexes prepared with (S)-[4-2H]NADH, demonstrating that the pro-R position of NADH is closer to Mn2+ than the pro-S position and suggesting that tartrate dehydrogenase is an A-side-specific dehydrogenase. Oxalate also affected Cs+ binding; the intensity of the 133Cs signal increased in the presence of oxalate, which suggest that oxalate facilitates binding of Cs+ to the active site or that Cs+ binds closer to Mn2+ when oxalate is present. In addition to signals from substrates, electron spin echo envelope modulation spectra revealed 14N signals that arose from coordination to Mn2+ by nitrogen-containing ligands from the protein; however, the identity of this ligand or ligands remains obscure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.