Abstract

TiC/a:C nanocomposite thin film has proven to be a worthy material selection as a thin film for tribological applications due to its low coefficient of friction, good wear resistance and high hardness. In the current study TiC/a:C thin films with carbon concentration near 55-62 at % were deposited via pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) in pure argon atmosphere with different substrate bias voltages and onto 440C stainless steel substrate with different substrate roughness. It was found that the TiC/a:C film hardness and elastic modulus were increased from 18.5 GPa to 33.8 GPa by increasing the substrate bias from floating to -150 V. However higher substrate bias can also decrease the film tibological properties. The substrate roughness has a strong effect on TiC/a:C film wear behavior. When the Ra (Mean surface roughness values) is less than 110 nm, the COF values are in low range (0.18-0.28). Further increase the Ra value to above 300 nm will result in a higher COF (>0.33). Films deposited on higher surface roughness substrate need longer time to reach the sliding equilibrium state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call