Abstract

Goal: To establish Pulse2AI as a reproducible data preprocessing framework for pulsatile signals that generate high-quality machine-learning-ready datasets from raw wearable recordings. Methods: We proposed an end-to-end data preprocessing framework that adapts multiple pulsatile signal modalities and generates machine-learning-ready datasets agnostic to downstream medical tasks. Results: a dataset preprocessed by Pulse2AI improved systolic blood pressure estimation by 29.58%, from 11.41 to 8.03 mmHg in root-mean-square-error (RMSE) and its diastolic counterpart by 26.01%, from 7.93 to 5.87 mmHg in RMSE. For respiration rate (RR) estimation, Pulse2AI boosted performance by 19.69%, from 1.47 to 1.18 breaths per minute (BrPM) in mean-absolute-error (MAE). Conclusion: Pulse2AI turns pulsatile signals into machine learning (ML) ready datasets for arbitrary remote health monitoring tasks. We tested Pulse2AI on multiple pulsatile modalities and demonstrated its efficacy in two medical applications. This work bridges valuable assets in remote sensing and internet of medical things to ML-ready datasets for medical modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.