Abstract

We report the influences of pulse widths on the programming and erasing characteristics of diamond-like carbon films based resistive random access memory. The device can be only programmed with pulses wider than 50 ns for SET operations when the pulse voltage is 1.2 V and erased with pulses narrower than 25 ns for RESET operations when the pulse voltage is 0.4 V. The formation, rupture, and re-growth of the conductive sp2-like graphitic filaments are proposed to be responsible for the resistive switching behaviors, based on which the pulse widths dependences on its programming and erasing properties can be further explained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call