Abstract

Cu-SiC nanocomposite coatings have been deposited from an aqueous sulfate electrolyte using the technique of pulse reverse electrodeposition both in the absence and presence of three different types of surfactants, anionic, cationic, or nonionic. The effects of different electrodeposition parameters on some properties of the coatings have been studied. In all cases, it has been observed that the surface roughness, hardness, and resistivity increase with the increase in cathodic current density. However, they have been observed to decrease with the increase in anodic current density and the anodic current time. The variation in the amount of incorporated reinforcement with different deposition parameters has been observed to be dependent on the nature of the surfactant used. In the presence of cationic and nonionic surfactant, a noticeable increase in the amount of incorporated reinforcement and hardness has been observed. Samples prepared under higher anodic current density have been observed to possess lower stress, but intense texture. An increase in cathodic current density has been observed to decrease the extent of texturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call