Abstract

The hydrogen-facilitated anodic dissolution of steel is an interesting experimental phenomenon, but the persistent gaps in this knowledge area are great. The changes in the Tafel slopes and the reaction rates of steel that has been cathodically charged with hydrogen are interpreted mainly in the context of hydrogen trapping and de-trapping behaviors of steel using a variety of electrochemical methods. This study reveals that the increase in the anodic current density and the decrease in the polarization resistance are attributed primarily to the hydrogen-induced lattice expansion. Based on the Tafel-slope change, the oxidation of hydrogen cation partly contributed to the increase in the total anodic current density together with the dominant anodic reaction of the steel dissolution. The electrochemical permeation measurements showed much slower effusion kinetics of the hydrogen that has been trapped at the ε-carbide particles, and the trapping and de-trapping behavior at the fine particles are one of the controlling factors of the hydrogen-enhanced anodic dissolution of steel. From an engineering aspect, it is believed that the current study will provide an important insight into future perspectives on stress corrosion cracking failure occurring in various high-strength steels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.