Abstract
The spectral changes as well as the reaction kinetics of the transient species of 4,4'-bipyridyl (4,4'-bpy) have been experimentally investigated by pulse radiolysis techniques up to 400 degrees C. The results show that the transient species such as OH adduct 4,4'-bpyOH*, monoprotonated electron adduct 4,4'-bpyH*, and doubly protonated electron adduct 4,4'-bpyH2+* have 15-20 nm blue shifts from room temperature to 400 degrees C. For a deaerated neutral solution of 4,4'-bpy in the presence of tert-butyl alcohol, ethanol, or NaCOOH, the doubly protonated electron adduct is the main transient species at room temperature. But at temperatures > 350 degrees C, a monoprotonated form, the N-hydro radical 4,4'-bpyH*, becomes predominant. Interestingly, at room temperature, CO2-* could not efficiently react with 4,4'-bpy, but the reaction was accelerated with increasing temperature; at 350 degrees C, this reaction completed within 2 mus. Using an alkaline solution (pH = 11.5) of 4,4'-bpy in the presence of tert-butyl alcohol, we studied the N-hydro radical 4,4'-bpyH* from room temperature to 400 degrees C at 25 MPa. An estimation of the temperature-dependent G(e(aq)-) at 25 MPa agrees with our previous result with methyl viologen as a scavenger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.