Abstract

We developed a multi-tasking deep learning model for simultaneous pulse height estimation and pulse shape discrimination for pile-up n/γ signals. Compared with single-tasking models, our model showed better spectral correction performance with higher recall for neutrons. Further, it achieved more stable neutron counting with less signal loss and a lower error rate in the predicted gamma ray spectra. Our model can be applied to a dual radiation scintillation detector to discriminatively reconstruct each radiation spectrum for radioisotope identification and quantitative analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.