Abstract

Introduction: Predicting rare catastrophic events is challenging due to lack of targets. Here we employed a multi-task learning method and demonstrated that substantial gains in accuracy and generalizability was achieved by sharing representations between related tasks Methods: Starting from Taiwan National Health Insurance Research Database, we selected adult people (>20 year) experienced in-hospital cardiac arrest but not out-of-hospital cardiac arrest during 8 years (2003-2010), and built a dataset using de-identified claims of Emergency Department (ED) and hospitalization. Final dataset had 169,287 patients, randomly split into 3 sections, train 70%, validation 15%, and test 15%.Two outcomes, 30-day readmission and 30-day mortality are chosen. We constructed the deep learning system in two steps. We first used a taxonomy mapping system Text2Node to generate a distributed representation for each concept. We then applied a multilevel hierarchical model based on long short-term memory (LSTM) architecture. Multi-task models used gradient similarity to prioritize the desired task over auxiliary tasks. Single-task models were trained for each desired task. All models share the same architecture and are trained with the same input data Results: Each model was optimized to maximize AUROC on the validation set with the final metrics calculated on the held-out test set. We demonstrated multi-task deep learning models outperform single task deep learning models on both tasks. While readmission had roughly 30% positives and showed miniscule improvements, the mortality task saw more improvement between models. We hypothesize that this is a result of the data imbalance, mortality occurred roughly 5% positive; the auxiliary tasks help the model interpret the data and generalize better. Conclusion: Multi-task deep learning models outperform single task deep learning models in predicting 30-day readmission and mortality in in-hospital cardiac arrest patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.