Abstract

Non-destructive analysis of fiber reinforced polymer (FRP) composites is important for confirming the long-term safety and durability of concrete structures. In this study, a pulse-heating infrared thermography technique was used to detect and characterize bonding defects of externally bonded carbon fiber reinforced polymers (CFRP) on concrete surface structures. The CFRP composite contains various bonding defects of three different sizes located at five different depths. Sequential thermal images were obtained to describe the temperature contrast and shapes of the bonding defects. Through analysis of the maximum temperature response, we investigated the effects of defect size and depth on the defect temperature response. The relationship between the defect depth and maximum temperature response was used to quantitatively estimate the defect depth. In addition, finite element simulations were performed on the CFRP composites with bonding defects to investigate the temperature response of various defects, which showed good agreement with the experimental results. This confirms the effectiveness of the infrared thermography method to detect and characterize bonding defects of FRP composites bonded on concrete structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.