Abstract

The electrodeposition of cuprous iodide (CuI) within the pores of interconnected TiO 2 particles has been investigated using current pulse electrodeposition and continuous current electrodeposition techniques, both in the dark and under illumination. Under illumination, the solar cells fabricated using the electrodes prepared by pulse electrodeposition, provide a collection efficiency of 3.28% with N-719 dye, whereas those prepared by continuous electrodeposition give only 0.75% efficiency, both in the absence of triehylammine hydrothiocyanate (THT, a crystal growth inhibiter) and under simulated AM 1.5 illumination. The CuI films were also grown by combining pulse electrodeposition (without THT) with drop-by-drop solution casting (with THT). The cells prepared by these electrodes give an even higher collection efficiency of 3.85%, as compared with the 3.38% efficiency of films prepared by only solution casting CuI in the presence of THT. This is the first report of the use of pulse electrodeposition to prepare CuI for dye-sensitized solid-state solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.