Abstract

Low-noise integrated all-optical wavelength converters that can be operated in short pulse regime are essential tools to overcome contention resolution in a modern communication network, based on wavelength division multiplexing. Any imperfect functionality in such devices causes non-ideal optical power transfer to the converted data pulses. All imperfections during the preparation and operation of the wavelength converters can be addressed to the waveguide inhomogeneity which distorts data pulses to be converted. This paper reports different waveguide inhomogeneity effects on the pulse distortion while using periodically poled lithium niobate waveguide as wavelength converters. Three types of chi ^{(2)}-based nonlinear optical processes, including second harmonic generation, difference frequency generation, and cascaded second harmonic generation/difference frequency generation are numerically studied to show that any constant, linear, and quadratic waveguide inhomogeneity causes short pulse (down to 1 ns) distortion in such wavelength converters. In addition, it is shown that the reconstruction of textrm{sech}^2-shaped generated pulses is possible, when suitable upside-down quadratic variations of obtained inhomogeneity are deliberately induced in the waveguide. Notably, for pulsed second harmonic generation, the generated pulse can be compressed using an upside-down quadratic phase mismatch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call