Abstract

The pulsational mode of gravitational collapse (PMGC) originating from the combined gravito-electrostatic interaction in complex dust molecular clouds (DMCs) is a canonical mechanism leading to the onset of astronomical structure formation dynamics. A generalized semi-analytic model is formulated to explore the effects of the Eddington-inspired Born-Infeld (EiBI) gravity, non-thermal (r,q)-distributed electrons, and dust-polarization force on the PMGC stability concurrently. The thermal ions are treated thermo-statistically with the Maxwellian distribution law and the non-thermal electrons with the (r,q)-distribution law. The constitutive partially ionized dust grains are modeled in the fluid fabric. A spherical normal mode analysis yields a generalized linear PMGC dispersion relation. Its oscillatory and propagation characteristics are investigated in a judicious numerical platform. It is found that an increase in the polarization force and positive EiBI parameter significantly enhances the instability, causing the DMC collapse and vice versa. The electron non-thermality spectral parameters play as vital stabilizing factors, and so on. Its reliability and applicability are finally outlined in light of astronomical predictions previously reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.