Abstract

Pulsar glitches-the sudden spin-up in the rotational frequency of a neutron star-suggest the existence of an angular-momentum reservoir confined to the inner crust of the neutron star. Large and regular glitches observed in the Vela pulsar have originally constrained the fraction of the stellar moment of inertia that must reside in the solid crust to about 1.4%. However, crustal entrainment-which until very recently has been ignored-suggests that in order to account for the Vela glitches, the fraction of the moment of inertia residing in the crust must increase to about 7%. This indicates that the required angular momentum reservoir may exceed that which is available in the crust. We explore the possibility that uncertainties in the equation of state provide enough flexibility for the construction of models that predict a large crustal thickness and consequently a large crustal moment of inertia. Given that analytic results suggest that the crustal moment of inertia is sensitive to the transition pressure at the crust-core interface, we tune the parameters of the model to maximize the transition pressure, while still providing an excellent description of nuclear observables. In this manner we are able to obtain fractional moments of inertia as large as 7% for neutron stars with masses below 1.6 solar masses. In particular, we find that if the neutron-skin thickness of 208Pb falls within the (0.20-0.26) fm range, large enough transition pressures can be generated to explain the large Vela glitches without invoking an additional angular-momentum reservoir beyond that confined to the solid crust. Our results suggest that the crust may be enough.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.