Abstract
Paper mills are among the most polluting industries, responsible for many organic and inorganic compounds emissions. The fibres electro-kinetic features strongly affect the ability to retain fillers since the fillers–fibres interactions are charge induced. The control and the prediction of these parameters would represent a precious aid for process management, allowing the fillers retention enhancement, a lower environmental impact and the paper sheet properties streamlining. The work presented deals with the implementation and training of four artificial neural networks (ANNs) for the prediction of the main electrochemical and physical features of cellulose pulp and paper. First, two ANNs predict the electrochemical parameters. Following, they were applied to predict the paper sheet properties and fillers retention. The neural models implemented showed outstanding prediction performance, with R2 in the order of 0.999 and a low mean error. The results demonstrate how Artificial Neural Networks may be a valuable instrument for paper mill pollutant reduction. However, they suggest a more inclusive investigation for a better fibres behaviour representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.