Abstract

The lung is an appropriate present and future target for gene therapy approaches designed to treat inherited monogenic diseases, eradicate bronchial tumours, transfer pharmacologically active products to the general circulation, express enzymes to catabolise toxins, manage pulmonary hypertension and lung injury and vaccinate against infection. Despite 35 years of gene therapy research and some significant milestones in molecular biology, the clinical potential of gene therapy has yet to be realised. In pulmonary gene therapy the nucleic acid cargo needs to be delivered to cells in the �target region of the lung, and even in cases when these targets are well defined this is severely limited by the pulmonary architecture, clearance mechanisms, immune activation, the presence of respiratory mucus and the availability of a truly representative biological model. The challenge from a drug delivery perspective is to consider the suitability of conventional nebulisers and inhalers for delivering DNA to the lung and design and apply integrated formulation and device solutions specific to nucleic acid delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.