Abstract

The objective of this study was to determine the nitric oxide (NO) concentration and vessel diameter dependence of the pulmonary arterial dilation induced by inhaled NO. Isolated dog lung lobes were situated between a microfocal X-ray source and X-ray detector and perfused with either blood or plasma. Boluses of radiopaque contrast medium were injected into the lobar artery under control conditions, when the pulmonary arteries were constricted by infusion of serotonin and when the serotonin infusion was accompanied by inhalation of from 30 to 960 parts/million NO. Arterial diameter measurements were obtained from X-ray images of vessels having control diameters in the 300- to 3,400-microm range. Serotonin constricted the vessels throughout the size range studied, with an average decrease in diameter of approximately 20%. The fractional reversal of the serotonin-induced constriction by inhaled NO was directly proportional to inhaled NO concentration, inversely proportional to vessel size, and greater with plasma than with blood perfusion in vessels as large as 3 mm in diameter. The latter indicates that intravascular hemoglobin affected the bronchoalveolar-to-arterial luminal NO concentration gradient in fairly large pulmonary arteries. The data provide information regarding pulmonary arterial smooth muscle accessibility to intrapulmonary gas that should be useful as part of the database for modeling the communication between intrapulmonary gas and pulmonary arterial smooth muscle cells in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call