Abstract
This study investigates how random component yields can influence pricing and production decisions under pull and push contracts. We consider a decentralised assembly system where a manufacturer procures complementary components from two suppliers with random yields. We first characterise the centralised equilibrium decision as a benchmark and then analyse the equilibrium solutions in a decentralised assembly system under each contract. We find that neither contract is always superior to the other in terms of system profit. Under a push contract, suppliers always achieve the first mover advantage with higher payoff. However, the first mover advantage does not hold for the manufacturer under a pull contract. We further conduct sensitivity analysis to study the impact of random component yields and retail price on equilibrium solutions under each contract. Interestingly, the wholesale prices charged by suppliers always increase with supply yield uncertainty under a pull contract, but decrease under a push contract. In contrast with the centralised solution, the equilibrium quantities in the decentralised solution decrease with supply yield uncertainty under both pull and push contracts. We then extend our model to a general case with multiple suppliers. The system payoff decreases with the number of suppliers, and the main results derived in two suppliers setting still hold in the system with multiple suppliers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.