Abstract

Puerarin, the main isoflavone glycoside found in the Chinese herb radix of Pueraria lobata (Willd.) Ohwi, has received increasing attention because of its possible role in the prevention of osteoporosis. Previously, we showed that puerarin could inhibit the bone absorption of osteoclasts and promote long bone growth in fetal mouse in vitro. Further study confirmed that puerarin stimulated proliferation and differentiation of osteoblasts in rat. However, the mechanisms underlying its actions on human bone cells have not been well defined. Here we show that puerarin increases proliferation and differentiation and opposes cisplatin-induced apoptosis in human osteoblastic MG-63 cells containing two estrogen receptor (ER) isoforms. Puerarin promotes proliferation by altering cell cycle distribution whereas puerarin-mediated survival may be associated with up-regulation of Bcl-xL expression. Treatment with the ER antagonist ICI 182,780 abolishes the above actions of puerarin on osteoblast-derived cells. Using small interfering double-stranded RNA technology, we further demonstrate that the effects of puerarin on proliferation, differentiation and survival are mediated by both ERα and ERβ. Moreover, we also demonstrate that puerarin functions at least partially through activation of MEK/ERK and PI3K/Akt signaling. This agent also shows much weaker effect on breast epithelial cell growth than that of estrogen. Therefore, puerarin will be a promising agent that prevents or retards osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.