Abstract

BackgroundPseudorabies virus (PRV), a member of the family Herpesviridae, is responsible for significant economic losses in the pig industry and has recently been associated with human viral encephalitis, leading to severe neurological symptoms post-recovery. Despite the widespread impact of PRV, there are currently no approved effective drugs for treating PRV-related diseases in humans or pigs. Therefore, the exploration and discovery of safe and effective drugs for the prevention and treatment of PRV infection is of paramount importance. PurposeThe objective of this study is to screen and identify natural compounds with antiviral activity against PRV. MethodsFirst, we used a strain of PRV with green fluorescent protein (PRV-GFP) to screen a natural product chemical library to identify potential antiviral drugs. Next, we assessed the antiviral abilities of salvianolic acid A (SAA) in vitro using virus titer assay, qPCR, and IFA. We investigated the mechanisms of SAA's antiviral activity through viral attachment, internalization, inactivation, and nuclease digestion assay. Finally, we evaluated the efficacy of SAA in inactivating PRV using mice as the experimental subjects. ResultsThis study screened 206 natural compounds for anti-PRV activity in vitro, resulting in the identification of seven potential antiviral agents. Notably, SAA emerged as a promising candidate with significant anti-PRV activity. The mechanism of action may be that SAA can directly inactivate the virus by disrupting viral envelope. In vivo experiments have shown that pre-incubation of SAA and PRV can effectively inhibit the infectivity and pathogenicity of PRV in mice. ConclusionThis study offers valuable insights into the antiviral properties of SAA, potentially informing strategies for controlling PRV epidemics and treating related diseases in both humans and animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.