Abstract
We discuss the consistency of a recently proposed class of theories described by an arbitrary function of the Ricci scalar, the trace of the energy-momentum tensor and the contraction of the Ricci tensor with the energy-momentum tensor. We briefly discuss the limitations of including the energy-momentum tensor in the action, as it is a non fundamental quantity, but a quantity that should be derived from the action. The fact that theories containing non-linear contractions of the Ricci tensor usually leads to the presence of pathologies associated with higher-order equations of motion will be shown to constrain the stability of this class of theories. We provide a general framework and show that the conformal mode for these theories generally has higher-order equations of motion and that non-minimal couplings to the matter fields usually lead to higher-order equations of motion. In order to illustrate such limitations we explicitly study the cases of a canonical scalar field, a K-essence field and a massive vector field. Whereas for the scalar field cases it is possible to find healthy theories, for the vector field case the presence of instabilities is unavoidable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.