Abstract

The generic form of space-time dynamics as a classical gauge field theory has recently been derived, based on only the action principle and on the principle of general relativity. It was thus shown that Einstein’s general relativity is the special case where (i) the Hilbert Lagrangian (essentially the Ricci scalar) is supposed to describe the dynamics of the “free” (uncoupled) gravitational field, and (ii) the energy–momentum tensor is that of scalar fields representing real or complex structureless (spin-[Formula: see text]) particles. It followed that all other source fields — such as vector fields representing massive and nonmassive spin-[Formula: see text] particles — need careful scrutiny of the appropriate source tensor. This is the subject of our actual paper: we discuss in detail the coupling of the gravitational field with (i) a massive complex scalar field, (ii) a massive real vector field, and (iii) a massless vector field. We show that different couplings emerge for massive and nonmassive vector fields. The massive vector field has the canonical energy–momentum tensor as the appropriate source term — which embraces also the energy density furnished by the internal spin. In this case, the vector fields are shown to generate a torsion of space-time. In contrast, the system of a massless and charged vector field is associated with the metric (Hilbert) energy–momentum tensor due to its additional [Formula: see text] symmetry. Moreover, such vector fields do not generate a torsion of space-time. The respective sources of gravitation apply for all models of the dynamics of the “free” (uncoupled) gravitational field — which do not follow from the gauge formalism but must be specified based on separate physical reasoning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call