Abstract

Secret sharing is an important aspect of key management in wireless ad hoc and sensor networks. In this paper, we define a new secure model of secret sharing, use the Lagrange interpolation and the bilinear cyclic groups to construct an efficient publicly verifiable secret sharing scheme on the basis of this model, and show that this scheme is provably secure against adaptively chosen secret attacks (CSAs) based on the decisional bilinear Diffie-Hellman (DBDH) problem. We find that this scheme has the following properties: (a) point-to-point secure channels are not required in both the secret distribution phase and the secret reconstruction phase; (b) it is a noninteractive secret sharing system in that the participants need not communicate with each other during subshadow verification; and (c) each participant is able to share many secrets with other participants despite holding only one shadow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.