Abstract

Group key agreement is one of the key technologies for ensuring information exchange security among group members. It is widely used in secure multiparty computation, resource security sharing, and distributed collaborative computing et al. The current group key agreement requires personal privacy protection, lightweight computing and more efficient and secure group key agreement technology. Aiming at these requirements, this paper proposed a lightweight group key agreement protocol based on blockchain, which uses the technical advantages of blockchain and asymmetric group key agreement combined. In this protocol, the blockchain anonymous authentication technology is used to implement personal privacy protection in the identity authentication process of the group key agreement, and the blockchain decentralized computing technology is adopted to reduce the computational and communication overhead of each participant. So it also suite able to use in resource-constrained mobile network, It also uses blockchain recording techniques for traceability and accountability (if some participants impersonate or falsify data, they can be recorded by the blockchain. No malicious attempts can be made undetected). This protocol is proved secure under the decisional bilinear Diffie-Hellman (DBDH) problem assumption and the performance analysis shows that the proposed scheme is more efficient than existing works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call