Abstract

Environmental problems are growing at a pace and scale that traditional research methods alone can no longer tackle. Innovative research models that utilize contributory, participatory and crowdsourcing methods are rapidly emerging to fill this gap. For these participatory efforts to be effective and sustainable, however, closer attention must be paid to key components that can promote coordinated action and sustainability. Through the lens of public participation in plant-pollinator conservation, I have, with rigorous social-ecological inquiry, offered three foundational assessment areas that can provide scientific support to this nascent field: accuracy, ecological significance and scalability. In the first study (Chapter 2), I explored a common concern about citizen science: that a lack of foundational knowledge, or familiarity with following scientific protocols could lead to inaccurate data collection. I evaluated the accuracy of plant phenology observations collected by citizen scientist volunteers following protocols designed by the USA National Phenology Network (USA-NPN). Phenology observations made by volunteers receiving several hours of formal training were compared to those collected independently by a professional ecologist. Approximately 11,000 observations were recorded by 28 volunteers over the course of one field season. Volunteers consistently identified phenophases correctly (91% overall and 70% during transitions) for the 19 species observed. Accuracy varied significantly by phenophase and species (p<0.0001). Volunteers who submitted fewer observations over the period of study did not exhibit a higher error rate than those who submitted more total observations, suggesting that volunteers with limited training and experience can provide reliable observations when following explicit, standardized protocols. Overall, these findings demonstrate the ii legitimacy of phenology observations collected by volunteers, an important finding for the increasing number of analysts relying on data collected by citizen scientists. In Chapter 3, I explored a common concern that restoration efforts implemented by the public may not have adequate ecological value. I addressed key ecological variables to determine how small-scale patches attracted pollinators and explored which of these variables might be best to prioritize for restoration efforts suited to public initiatives. This study demonstrated that in small-scale plant restoration sites, plant diversity and resource (nectar) availability significantly affects the abundance and diversity of pollinating insects. Specifically, the treatments which contained high-resource (nectar-rich) plant species increased pollinator abundance and diversity the most. Plant diversity increased pollinator diversity and abundance only in the absence of high-resource plants. Pollination facilitation was observed in high resource treatments, but varied among species. Competition for pollinators was

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.