Abstract

There is great potential value in linking geographically dispersed multitemporal observations collected by lay volunteers (or “citizen scientists”) with remotely-sensed observations of plant phenology, which are recognized as useful indicators of climate change. However, challenges include a large mismatch in spatial scale and diverse sources of uncertainty in the two measurement types. These challenges must be overcome if the data from each source are to be compared and jointly used to understand spatial and temporal variation in phenology, or if remote observations are to be used to predict ground-based observations. We investigated the correlation between land surface phenology derived from Moderate Resolution Imaging Spectrometer (MODIS) data and citizen scientists’ phenology observations from the USA National Phenology Network (NPN). The volunteer observations spanned 2004 to 2013 and represented 25 plant species and nine phenophases. We developed quality control procedures that removed observations outside of an a priori determined acceptable period and observations that were made more than 10 days after a preceding observation. We found that these two quality control steps improved the correlation between ground- and remote-observations, but the largest improvement was achieved when the analysis was restricted to forested MODIS pixels. These results demonstrate a high degree of correlation between the phenology of individual trees (particularly dominant forest trees such as quaking aspen, white oak, and American beech) and the phenology of the surrounding forested landscape. These results provide helpful guidelines for the joint use of citizen scientists’ observations and remote sensing phenology in work aimed at understanding continental scale variation and temporal trends.

Highlights

  • The phenology of deciduous trees and shrubs is sensitive to inter-annual variation in climate and is considered a useful indicator of the impact of climatic change on forest processes [1].Scientific understanding of these impacts has benefited from long-term monitoring of forest phenology at a range of spatial scales [2,3,4]

  • Before any quality control on the Nature’s Notebook (NN) observations, we found that the correlation between Moderate Resolution Imaging Spectrometer (MODIS) and NN observations was not significant (R2 = 0.014; p = 0.052)

  • Large MODIS pixels will always be an integration of many individual plants and diverse land cover, and this will limit compatibility with ground-based observations of phenology

Read more

Summary

Introduction

The phenology of deciduous trees and shrubs is sensitive to inter-annual variation in climate and is considered a useful indicator of the impact of climatic change on forest processes [1]. Scientific understanding of these impacts has benefited from long-term monitoring of forest phenology at a range of spatial scales [2,3,4]. Land surface phenology at this scale is viewed as the cumulative response of many individual organisms within each remote sensing pixel in combination with other land surface changes (e.g., soil moisture changes) [9], and is fundamentally different than field-based observations of individuals [10,11,12].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call