Abstract

In this paper, we present a mathematical model of infectious disease transmission in which people can engage in public avoidance behavior to minimize the likelihood of acquiring an infection. The framework employs the economist's theory of utility maximization to model people's decision regarding their level of public avoidance. We derive the reproductive number of a disease which determines whether an endemic equilibrium exists or not. We show that when the contact function exhibits saturation, an endemic equilibrium must be unique. Otherwise, multiple endemic equilibria that differ in disease prevalence can coexist, and which one the population gets to depends on initial conditions. Even when a unique endemic equilibrium exists, people's preferences and the initial conditions may determine whether the disease will eventually die out or become endemic. Public health policies that increase the recovery rate or encourage self-quarantine by infected people can be beneficial to the community by lowering disease prevalence. However, it is also possible for these policies to worsen the situation and cause prevalence to rise since these measures give people less incentive to engage in public avoidance behavior. We also show that implementing policies that result in a higher level of public avoidance behavior in equilibrium does not necessarily lower prevalence and can result in more infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.