Abstract

The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca(2+)-transporting ATPases; cluster 2: Na(+)- and gastric H(+)-ATPases; cluster 3: plasma membrane H(+)-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg(2+)-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call