Abstract

The hydrogenation behavior of p- and n-type ZnSe grown on GaAs by gas source molecular beam epitaxy (GSMBE) is presented. Recent advances in p-type doping, using a radio frequency (RF) plasma source with nitrogen, have led to the successful fabrication of blue/green light emitters based on the (Zn,Mg)(S,Se) material system grown by molecular beam epitaxy (MBE). GSMBE replaces the high vapor pressure group VI elements with hydride gases which are amenable to regulation using precision mass flow controllers, and has the potential to deliver improved compositional control and reproducibility. We have found that the presence of hydrogen does not affect the electrical conductivity of ZnSe:Cl grown by GSMBE. In contrast, nitrogen-doped ZnSe is speculated to be electrically passivated by hydrogen for certain growth conditions as evidenced by: (1) coherent tracking of the hydrogen concentration with variations in the nitrogen concentration, which is measured by secondary ion mass spectrometry (SIMS), and (2) indications of high resistivity determined by capacitance-voltage ( C-V) measurements. Conventional and rapid thermal annealing (RTA) have been investigated to modify the degree of hydrogen passivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call