Abstract
Versatile syntheses of secondary and tertiary amines by highly efficient direct N-alkylation of primary and secondary amines with alcohols or by deaminative self-coupling of primary amines have been successfully realized by means of a heterogeneous bimetallic Pt-Sn/γ-Al(2)O(3) catalyst (0.5 wt % Pt, Pt/Sn molar ratio=1:3) through a borrowing-hydrogen strategy. In the presence of oxygen, imines were also efficiently prepared from the tandem reactions of amines with alcohols or between two primary amines. The proposed mechanism reveals that an alcohol or amine substrate is initially dehydrogenated to an aldehyde/ketone or NH-imine with concomitant formation of a [PtSn] hydride. Condensation of the aldehyde/ketone species or deamination of the NH-imine intermediate with another molecule of amine forms an N-substituted imine which is then reduced to a new amine product by the in-situ generated [PtSn] hydride under a nitrogen atmosphere or remains unchanged as the final product under an oxygen atmosphere. The Pt-Sn/γ-Al(2)O(3) catalyst can be easily recycled without Pt metal leaching and has exhibited very high catalytic activity toward a wide range of amine and alcohol substrates, which suggests potential for application in the direct production of secondary and tertiary amines and N-substituted imines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.