Abstract

The selective functionalization of unactivated aliphatic C-H bonds over intrinsically more reactive ones represents an ongoing challenge of synthetic chemistry. Here we show that in hydrogen atom transfer (HAT) from the aliphatic C-H bonds of alkane, ether, alcohol, amide, and amine substrates to the cumyloxyl radical (CumO•) fine control over site and substrate selectivity is achieved by means of acid-base interactions. Protonation of the amines and metal ion binding to amines and amides strongly deactivates the C-H bonds of these substrates toward HAT to CumO•, providing a powerful method for selective functionalization of unactivated or intrinsically less reactive C-H bonds. With 5-amino-1-pentanol, site-selectivity has been drastically changed through protonation of the strongly activating NH2 group, with HAT that shifts to the C-H bonds that are adjacent to the OH group. In the intermolecular selectivity studies, trifluoroacetic acid, Mg(ClO4)2, and LiClO4 have been employed in a orthogonal fashion for selective functionalization of alkane, ether, alcohol, and amide (or amine) substrates in the presence of an amine (or amide) one. Ca(ClO4)2, that promotes deactivation of amines and amides by Ca2+ binding, offers, moreover, the opportunity to selectively functionalize the C-H bonds of alkane, ether, and alcohol substrates in the presence of both amines and amides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.